1.5 Некоторые фундаментальные свойства электрона

Электроны демонстрируют свойства, как частиц, так и волн, иллюстрируя одну из великих загадок квантовой физики - корпускулярно-волновой дуализм. На самом деле ПЭМ регулярно демонстрирует как волновую, так и корпускулярную природу электронов, повторяя электронный аналог знаменитого опыта Тейлора, в котором он продемонстрировал интерференцию света через две узкие щели, несмотря на использование такого слабого источника света, что только один фотон проходил через любую из щелей в каждый момент времени. Ток электронного пучка в ПЭМ может быть около 0.1-1 мА, что соответствует примерно 1012 электронам, проходящим сквозь плоскость образца. Но, как мы увидим ниже, при 100 кэВ, эти электроны движутся примерно половине скорости света (на самом деле примерно 1,6·108 м/с), и получается, что они находятся на расстоянии около 1,6 мм друг от друга, и это означает, что в образце в любой момент времени находится не более одного электрона. Тем не менее, электронная дифракция и интерференция имеют место быть, и оба эти явления являются волновыми явлениями и требуют взаимодействия различных электронных волн. Несмотря на эту дилемму, мы много знаем об электроне и его поведении, и некоторые основные характеристики приведены в таблице 1.1, наряду с некоторыми соответствующими физическими константами.

TABLE 1.1 Fundamental Constants and Definitions
Заряд (e)
(-) 1.602·10-19 Кл
1 эВ
1.602·10-19 Дж
Масса покоя (m0)
9.109·10-31 кг
Энергия покоя (m0c2)
511 кэВ
Кинетическая энергия (заряд·напряжение)
1.602·10-19 Н·м (для потенциала в 1 Вольт) =Дж
Постоянная Планка (h)
6.626·10-34 Н·м·с
1 A
1 Кл/с
Скорость света в вакууме (c)
2.998·108 м/с

Есть несколько важных уравнений, которые необходимо знать: прежде всего, на основе идеи де Бройля о корпускулярно-волновом дуализме, можно связать момент скорости частицы p, и ее длину волны ?, через постоянную Планка:

(1.3)


В ПЭМ, мы сообщаем момент электроны посредством приложения ускоряющего потенциала V, придающего электрону кинетическую энергию eV. Эта потенциальная энергия можно приравнять к кинетической:

(1.4)

Теперь выразив момент электрона p через массу m0 и скорость ν, где ν из формулы 1.4 можно выразить через ускоряющий потенциал, в итоге получим:

(1.5)

Теперь подставив выражение для момента скорости (1.5) в уравнения 1.3 мы можем найти связь между длиной волны электрона и ускоряющим потенциалом:

(1.6)

Если оглянуться назад, то это уравнение эквивалентно уравнению 1.2. Обратная связь между λ и V вводит очень важное понятие: за счет увеличения ускоряющего напряжения, мы уменьшаем длину волны электронов.

Уравнения 1.2 и 1.6 могут быть использованы выражения для получения приблизительной оценки длины волны электронов. Мы можем использовать уравнение 1.6 для расчета нерелятивистской длины волны электрона, для наиболее часто используемых напряжений в современных ПЭМ, значений длин волн приведены в таблице 1.2.


Таблица 1.2 Свойства электрона в зависимости от ускоряющего напряжения
Ускоряющее напряжение (кВ)
Релятивистская длина волны (нм)
Релятивистская длина волны (нм)
Масса (x m0)
Скорость, (x108 м/с)
100
0.00386
0.00370
1.196
1.644
120
0.00352
0.00335
1.235
1.759
200
0.00273
0.00251
1.391
2.086
300
0.00223
0.00197
1.587
2.330
400
0.00193
0.00164
1.783
2.484
1000
0.00122
0.00087
2.957
2.823


Соотношение 1.6, которое мы только что получили, не учитывает релятивистские эффекты, и, к сожалению, для электронной микроскопии, релятивистские эффекты не могут быть проигнорированы при энергиях выше 100 кэВ, потому что скорости электронов становятся больше половины скорости света! Так, если быть точным, то мы должны изменить уравнение 1.6 и добавить туда релятивистскую поправку:

(1.7)

Полный список, включающий еще много напряжений, может легко быть получен, подставив соответствующее ускоряющее напряжение в формулы 1.6 и 1.7. Влияние релятивистского эффекта тем больше, чем выше ускоряющее напряжение, как показано в Таблице 1.2, который включает в себя все ускоряющие напряжения коммерчески доступных ПЭМ. Мы будем многократно возвращаться к этим цифрам, когда будем рассчитывать разрешение микроскопа, и когда мы будем делать расчеты о том, как электроны взаимодействуют с веществом.